In [4]:
    
n = 10
loc_data = np.zeros((n, 2))
loc_data[0] = np.array([12, 120])
loc_data[1] = np.array([56, 43])
    
In [5]:
    
loc_data
    
    Out[5]:
In [6]:
    
class JetManager(object):
    def __init__(self, no):
        self.no = no
        self.lat = loc_data[no][0]
        self.lon = loc_data[no][1]
    
In [7]:
    
simman = Jet(0)
    
In [8]:
    
jet.lat
    
    Out[8]:
In [9]:
    
jet.lon
    
    Out[9]:
In [18]:
    
class Particle(object):
    def __init__(self, sourcejet):
        self.source = sourcejet
        self.pos = (self.source.lat, self.source.lon)
        self.origpos = self.pos.copy()
    def update_pos(self, newpos):
        self.pos = newpos
    
In [11]:
    
def convert_porco(old):
    return 180. - old - 3.5
    
In [12]:
    
def convert_porco2(old):
    return 180. - (old - 3.5)
    
In [16]:
    
input = np.arange(0, 360, 5)
    
In [17]:
    
for i, j,k in zip(input, convert_porco(input), convert_porco2(input)):
    print(i,j,k)
    
    
In [30]:
    
import SpiceyPy as spice
    
In [32]:
    
spice.latrec(200000, -80, 10)
    
    Out[32]:
In [33]:
    
spice.latrec(200, -80, 10)
    
    Out[33]:
In [34]:
    
spice.reclat?
    
In [40]:
    
axes = np.array([250, 260, 270])
axes = axes*1000
point_i = spice.latrec(axes[2], np.deg2rad(170), np.deg2rad(-85))
    
In [39]:
    
spice.surfnm(axes[0], axes[1], axes[2], point_i)
    
    Out[39]:
In [41]:
    
spice.surfnm(axes[0], axes[1], axes[2], point_i)
    
    Out[41]:
In [42]:
    
np.where?
    
In [60]:
    
def _100_():
    import xlrd
    excelFile100sources = '/Users/klay6683/Dropbox/SternchenAndMe/Enceladus_stuff/100_sources_Porco2014.xlsx'
    book = xlrd.open_workbook(excelFile100sources)
    sh = book.sheet_by_index(0)
    # loop over columns in excel sheet
    lonlat = np.zeros((sh.nrows, 2))
    lonlat[:, 0] = sh.col_values(0)[:]
    lons = np.array(sh.col_values(1)[:])
#     ### LONGITUDES !!!
    lonlat[:,1]=180. - (lons - 3.5) # it is West Lon in the paper with different zero and in Voyager era            
    return lonlat
    
In [62]:
    
_100_()[:5]
    
    Out[62]:
In [78]:
    
df = pd.read_excel('/Users/klay6683/Dropbox/SternchenAndMe/Enceladus_stuff/100_sources_Porco2014.xlsx',
                   header=None)
lonlat = df[[0,1]].values
lonlat[:, 1] = 180. - (lonlat[:, 1] - 3.5)
    
In [79]:
    
lonlat[:5]
    
    Out[79]:
In [75]:
    
lonlat[:, 0]
    
    Out[75]:
In [76]:
    
lonlat[:, 0] = 180. - (lonlat[:, 0] -3.5)
    
In [77]:
    
lonlat[:5]
    
    Out[77]:
In [82]:
    
i=50
'jet'+str(i).zfill(2)
    
    Out[82]:
l = False
In [84]:
    
check = 'False'
    
In [86]:
    
if check:
    print("yes")
    
    
In [104]:
    
convert_porco2(62.59)
    
    Out[104]:
In [93]:
    
convert_porco(58.64)
    
    Out[93]:
In [110]:
    
lonlat[93]
    
    Out[110]:
In [100]:
    
number2reset = 15000
lonlat_all = lonlat
dlon = np.zeros(number2reset)
dlon[:] = np.deg2rad(lonlat_all[3,1])
dlat = np.zeros(number2reset)
dlat[:] = np.deg2rad((lonlat_all[3,0]))
source_lat = dlat[0]
source_lon = dlon[0]
    
In [101]:
    
source_lon
    
    Out[101]:
In [103]:
    
np.rad2deg(source_lon)
    
    Out[103]:
In [115]:
    
convert_porco2(184.81)
    
    Out[115]:
In [112]:
    
df.loc[93]
    
    Out[112]:
In [123]:
    
lonlat[90:100]
    
    Out[123]:
In [114]:
    
convert_porco2??
    
In [ ]: